The classical Heisenberg Model of 3d spins on a lattice with random anisotropy.
| Parameters : | dim: list
field_disorder: float
fields: array
|
|---|
Notes
The Hamiltonian is
H = - sum_ij J_ij dot( s_i, s_j ) - sum_i dot( h_i, s_i )**2
where h_i are quenched random variables. (h_i is a vector)
Methods
| NumericalDerivative(coords[, eps]) | return the gradient calculated numerically |
| NumericalHessian(coords[, eps]) | return the Hessian matrix of second derivatives computed numerically |
| getEnergy(coords) | coords is a list of (theta, phi) spherical coordinates of the spins |
| getEnergyGradient(coords) | coords is a list of (theta, phi) spherical coordinates of the spins |
| getEnergyGradientHessian(coords) | return the energy, gradient, and Hessian at the given coordinates |
| getEnergyGradientNumerical(coords) | |
| getGradient(coords) | return the gradient at the given coordinates |
| getHessian(coords) | return the hessian |
| test_potential(coords[, eps]) | print some information testing whether the analytical gradients are correct |