mcpele
1.0.0
The Monte Carlo Python Energy Landscape Explorer
|
action(pele::Array< double > &coords, double energy, bool accepted, MC *mc) | mcpele::RecordScalarTimeseries | [virtual] |
clear() | mcpele::RecordScalarTimeseries | [inline] |
get_moving_average_mean(const size_t nr_steps_to_check) | mcpele::RecordScalarTimeseries | |
get_moving_average_variance(const size_t nr_steps_to_check) | mcpele::RecordScalarTimeseries | |
get_recorded_scalar(pele::Array< double > &coords, const double energy, const bool accepted, MC *mc) | mcpele::RecordLowestEValueTimeseries | [inline, virtual] |
get_time_series() | mcpele::RecordScalarTimeseries | [inline] |
moving_average_is_stable(const size_t nr_steps_to_check=1000, const double rel_std_threshold=0.1) | mcpele::RecordScalarTimeseries | |
RecordLowestEValueTimeseries(const size_t niter, const size_t record_every, std::shared_ptr< pele::BasePotential > landscape_potential, const size_t boxdimension, pele::Array< double > ranvec, const size_t lbfgsniter=30) | mcpele::RecordLowestEValueTimeseries | [inline] |
RecordScalarTimeseries(const size_t, const size_t) | mcpele::RecordScalarTimeseries | |
~Action() | mcpele::Action | [inline, virtual] |
~RecordLowestEValueTimeseries() | mcpele::RecordLowestEValueTimeseries | [inline, virtual] |
~RecordScalarTimeseries() | mcpele::RecordScalarTimeseries | [inline, virtual] |